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Abstract: 

Entropy is a measurement of disorder in any thermodynamic system.Clausius introduced  the concept of 

entropy in mid nineteen century and since then it has been continuously enriched our concepts regarding 

different branches of science. Concept of thermodynamic entropy was introduced by L.Boltzmann, and 

according to him thermodynamic entropy is directly proportional to logarithm of the number of microstates 

of the system. In this research paper we have discussed applications of this resultin Maxwell Boltzmann, 

Bose Einstein and Fermi Dirac statistics. In statistical mechanics Helmholtz function, entropy and partition 

function are directly linked together with different relations. Using this concept we have evaluated partition 

function, Helmholtz function and entropy for quantum mechanical harmonic oscillator, classical harmonic 

oscillator, paramagnetic and paraelectric substances, ideal and relativistic classical gas, black body radiation, 

monoatomic gasses in different dimensions, rotational motion etc. A brief analysis of entropy with the help 

of Gibbs free energy and entropy in grand canonical ensemble is also done.. 

Keywords: Entropy, Helmholtz function, Gibbs free energy, classical gas etc 

Introduction: 

Entropy was initially introduced by Clausius about 165 years ago and it is highly useful for the researchers 

in many different scientific discipline. In statistical mechanics behaviour of any thermodynamic system 

depends upon their constituent particles, for a particular particle in  statistical classical mechanics, 

microstates of any system can be defined by position and momentum of all the particles of the system. Now 

if a system  consist N , number of particles in the system then microstate of system can be specified by 3N 

position co-ordinates q1,q2,q3……….q3N  and 3N momentum co-ordinates p1,p2,p3………p3N. obviously 6N 

dimension is required to completely described the system. This type of 6N dimensional space is known to be 

phase space. Phase point(qj,pj) are said to be representative point of the given system. 

State of a particle in phase space is then given by specifying that its position co-ordinate lie in the interval 

between q and q+δq , and at the same instant its momentum co-ordinates lies in the interval between p and 

p+δp , it means phase space is divided into very small phase cells of size δpδq here each cell have the same 

size and each cell represents a different states of the particle.  

According to Heisenberg uncertainty principle (HUP) ∆𝑞∆𝑝~h  here h is planck constant and having the 

dimension of joule-sec.  ∆𝑞 represents uncertainty in the measurement of position and ∆𝑝 is the 

corresponding uncertainty in the measurement of the momentum.  HUP itself ensure that phase space should 

be divided into subparts having the volume h of a particular phase cell.  Therefore  two dimensional volume 

of a particular phase cell will be of the order of h (planck constant). In a 2f dimensional space volume of a 

particular phase cell will be hf .  This result ensure that in two dimensional phase space, volume of a particular 

phase cell will be order of h. Similarly in four dimensional phase space and six dimensional space volume 

of a corresponding phase cell will be of the order of h2 and h3 respectively. In mathematical form we can 

represent volume of a phase cell 

 

∆𝑥∆𝑝𝑥~h (joule-sec)                              two dimension phase cell volume 

∆𝑥∆𝑝𝑥∆𝑦∆𝑝𝑦~ℎ2 (joule-sec)2                       four dimension phase cell volume 
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∆𝑥∆𝑝𝑥∆𝑦∆𝑝𝑦∆𝑧∆𝑝𝑧 ~ℎ3(joule-sec)3      six  dimension phase cell volume 

From modern quantum physics we know that state of a system is described by spatial parts and spin parts. 

Due to this volume of phase space also depends upon spatial or position- momentum part and it also depends 

upon  total spin states. For a particular system which consist many particles and each individual particle have 

spin s then for  such particle magnetic spin quantum number ms  have the value lies between -s to +s , so total 

spin state is equal to ∑ 𝑚𝑠
+𝑠
−𝑠 = (2s+1)=γ values. 

According to Maxwell Boltzmann statistics, no of particles in rth state depends upon density of states gr and 

energy εr and temperature T of any thermodynamic system 

𝑛𝑟 = 𝐴 𝑔𝑟(𝜀𝑟)𝑒−𝛽𝜀𝑟 

                             Or                              
𝑛𝑟

𝑔𝑟
 =  𝐴 𝑒−𝛽𝜀𝑟 

                                                              𝑓𝑀𝐵  = 𝐴 𝑒−𝛽𝜀𝑟 

∑ 𝑓𝑀𝐵  = 1

𝑟

 

∑  𝐴 𝑒−𝛽𝜀𝑟 = 1

𝑟

 

𝐴 =  
1

∑  𝑒−𝛽𝜀𝑟𝑟
 = 

1

𝑍
 

Z is the partition function or sum over state of the system. 

Suppose the level of energy 𝜀𝑟 be degenerate having degeneracy 𝑔𝑟(𝜀𝑟), then partition function 

Z= ∑  𝑔𝑟(𝜀𝑟)𝑒−𝛽𝜀𝑟
𝑟  

The probability of a microstate as a function of its energy is given by Boltzmann distribution 

𝑃𝑟 =
𝑒

−𝜀𝑟
𝑘𝑇

∑ 𝑒
−𝜀𝑟
𝑘𝑇𝑟

  = 
𝑒

−𝜀𝑟
𝑘𝑇

𝑍
   where Z is the partition function of the system and T is the temperature and k is the 

Boltzmann constant. 

According to Gibbs entropy relation the entropy of a thermodynamic system is linked to probability 

distribution function 𝑆 =  − 𝑘 ∑ 𝑃𝑟𝑙𝑜𝑔𝑃𝑟𝑟      

 now 𝑃𝑟   is directly linked to W where W is the number of microstate of the system 

 𝑃𝑟 ∝
1

𝑊
 

𝑆 =  − 𝑘 ∑ 𝑃𝑟𝑙𝑜𝑔𝑃𝑟

𝑊

𝑟=1

 

𝑆 =  − 𝑘 ∑
1

𝑊
𝑙𝑜𝑔

1

𝑊

𝑊
𝑟=1  = klogW 

This expression is said to be Boltzmann Planck equation 

Boltzmann Planck equation is also applicable for more than one macrostate  and then entropy of a macrostate 

i  𝑆𝑖 = 𝑘𝑙𝑜𝑔𝑊𝑖    where 𝑊𝑖 = number of microstates corresponding to that microstates.  
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In terms of probability internal energy of any thermodynamic system is  𝑈 =  ∑ 𝑃𝑟𝑟 𝜀𝑟 where 𝑃𝑟 is the 

probability of finding the particle in microstate r and 𝜀𝑟 is the energy of particle in corresponding rth state. 

Now from the Helmholtz function F= U-TS   = -kTlogZ   so S= klogZ+
𝑈

𝑇
 

dF= dU-TdS-SdT= dQ- dW--TdS-SdT 

dF= TdS-PdV-TdS-SdT 

dF= -PdV-SdT 

𝑃 = − (
𝜕𝐹

𝜕𝑉
)

𝑇
 

Entropy S = − (
𝜕𝐹

𝜕𝑇
)

𝑉
 

Result and Discussion 

1. Analysis of Maxwell Boltzmann, Bose Einstein and Fermi Dirac statistics: 

 

Number of distinguishable ways, W in MB statistics can be described as 𝑊 = ∏
𝑔𝑖

𝑛𝑖

𝑛𝑖!

𝑁
𝑖    Where 𝑔𝑖 are 

the number of various states in which particle can be filled and 𝑛𝑖 are the number of particles. 

Number of distinguishable ways, W in BE statistics can be described as 𝑊 = ∏
(𝑛𝑖+𝑔𝑖−1)!

𝑛𝑖!(𝑔𝑖−1)!

𝑁
𝑖    Where 

𝑔𝑖 are the number of various states in which particle can be filled and 𝑛𝑖 are the number of particles. 

Number of distinguishable ways, W in FD statistics can be described as 𝑊 = ∏
𝑔𝑖!

𝑛𝑖!(𝑔𝑖−𝑛𝑖)!

𝑁
𝑖    Where 

𝑔𝑖 are the number of various states in which particle can be filled and 𝑛𝑖 are the number of particles. 

Then using the expression S=klogW we can easily evaluate entropy of the system in various cases. 

 

 

2. Analysis in the case of Grand canonical ensemble: 

 

𝑍(𝜇, 𝑇) =  ∑ 𝑒𝑥𝑝[(𝜇𝑁𝑟 − 𝐸𝑟)𝛽]

𝑟

 

𝑃𝑟 =  
𝑒𝑥𝑝[(𝜇𝑁𝑟 − 𝐸𝑟)𝛽]

𝑍(𝜇, 𝑇)
 

Now entropy in terms of probability 𝑃𝑟 is given by 𝑆 = −𝑘 ∑ 𝑃𝑟𝑙𝑜𝑔𝑃𝑟𝑟  

On solving we have 𝑆 = −𝑘𝜇𝛽〈𝑁〉 + 𝑘𝛽〈𝐸〉 + 𝑘𝑙𝑜𝑔𝑍(𝜇, 𝑇) 

𝑆 =
〈𝐸〉

𝑇
−

𝜇〈𝑁〉

𝑇
+  𝑘𝑙𝑜𝑔𝑍(𝜇, 𝑇) 

This is the expression of entropy. where  〈𝐸〉 is average energy and 〈𝑁〉 is the average number of 

particle and μ is the chemical potential. 

3. Analysis of a gas through Gibbs free energy: 

For a monoatomic gas Gibbs free energy which is the function of pressure and temperature can be described 

as 𝐺(𝑃. 𝑇) = 𝑅𝑇 log [
𝑎𝑃

(𝑅𝑇)
5
2

]  where a and R are the constants then the entropy of the system  S= − [
𝜕𝐺

𝜕𝑇
]

𝑃
 = 

5

2
𝑅 − 𝑅 log [

𝑎𝑃

(𝑅𝑇)
5
2

] 
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This expression shows that entropy depends upon pressure P and temperature T and when temperature T 

increases and pressure P decreases then entropy increases and vice versa.  

4. Analysis of quantum mechanical harmonic oscillator: 

According to quantum mechanics the possible energy levels of harmonic oscillator can be described as  𝜀𝑛 =

(𝑛 +
1

2
) ћ𝜔, where n is the quantum number and ω is the angular frequency which depends upon force 

constant k and mass m. 

ω=√
𝑘

𝑚
 

now from the expression of partition function we have 

𝑍 =  ∑  𝑒−𝛽𝜀𝑛∞
𝑛=0 =  ∑  𝑒−𝛽(𝑛+

1

2
)ћ𝜔∞

𝑛=0  = 𝑒
−𝛽ћ𝜔

2  
1

1−𝑒−𝛽ћ𝜔 

Z=  {2𝑠𝑖𝑛ℎ (
𝛽ћ𝜔

2
)}

−1

 

Now the partition function  for N harmonic oscillator 

Z=  {2𝑠𝑖𝑛ℎ (
𝛽ћ𝜔

2
)}

−𝑁

 

Now the Helmholtz free energy of the system 

F= NkTlog[2𝑠𝑖𝑛ℎ (
𝛽ћ𝜔

2
)] 

Then entropy of the system would be 

S= Nk [
𝛽ћ𝜔

2
𝑐𝑜𝑡ℎ

𝛽ћ𝜔

2
− 𝑙𝑜𝑔 [2𝑠𝑖𝑛ℎ (

𝛽ћ𝜔

2
)]] 

This expression shows that entropy of quantum mechanical harmonic oscillator depends upon total number 

of harmonic oscillator N, temperature T and angular frequency ω. 

5. Analysis of a free non relativistic particle confined in a cubic box: 

 

From the quantum mechanics we know that energy eigen value for free non relativistic particle can 

be expressed as  

ε= (𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2)

ℎ2

8𝑚𝐿2 

where ε = energy, 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 are the positive integer, L is the length of the box and h is the planck 

constant. 

This can be expressed as ∑ 𝑛𝑟
23𝑁

𝑟=1 =  
8𝑚𝑉

2
3𝐸

ℎ2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Entropy will be depends upon number of particle, volume of the cubic box and energy E so we have  

𝑆(𝑁, 𝑉, 𝐸) ≡ 𝑆 (𝑁, 𝑉
2

3𝐸) 

For a reversible adiabatic process entropy remains to be constant so we have                                 𝑉
2

3𝐸= 

constant and pressure P = − [
𝜕𝐸

𝜕𝑉
]

𝑁,𝑆
 = 

2

3

𝐸

𝑉
 here pressur is equal to two third of its energy density. 
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6.  Analysis of Classical Harmonic oscillator in various dimensions : 

 

Energy of classical harmonic oscillator is equal to the sum of kinetic energy and potential energy ε 

= 
𝑝𝑥

2

2𝑚
+ 

1

2
𝑘𝑥2 

From the definition of partition function we have 

Z= ∑  𝑔𝑟(𝜀𝑟)𝑒−𝛽𝜀𝑟
𝑟  

Now using the concept of phase space and taking the limit of x and 𝑝𝑥 from -∞ 𝑡𝑜 + ∞ 

∫ ∫
𝑑𝑥𝑑𝑝𝑥

ℎ

+∞

−∞

+∞

−∞
𝑒

−𝛽[
𝑝𝑥

2

2𝑚
+ 

1

2
𝑘𝑥2]

 

On solving we get 

𝑍 =  (
𝑘𝑇

ћ𝜔𝑥
)           1D 

For N oscillator system partition function would be  

𝑍𝑁 =  (𝛽ћ𝜔)−𝑁 

Here 𝜔𝑥 =  √
𝑘𝑥

𝑚
 = ω 

Now the Helmholtz energy of the system F= -kTlog(𝛽ћ𝜔)−𝑁= NkTlog(
ћ𝜔

𝑘𝑇
) 

 

Entropy S= − [
𝜕𝐹

𝜕𝑇
]

𝑁,𝑉
= Nk[𝑙𝑜𝑔 (

𝑘𝑇

ћ𝜔
) + 1] 

This expression shows that entropy depends upon the number of harmonic oscillator, temperature T and 

frequency ω and it increases when number of harmonic oscillator is increased and temperature of the system 

is increased and frequency of oscillation is decreased. 

Partition function obey the multiplicative property in different direction so for Anisotropic  2D harmonic 

oscillator we have  Z=  𝑍𝑥𝑍𝑦 

Z=    (
𝑘𝑇

ћ𝜔𝑥
) (

𝑘𝑇

ћ𝜔𝑦
)        Anisotropic 2D 

Here 𝜔𝑥 =  √
𝑘𝑥

𝑚
,  𝜔𝑦 =  √

𝑘𝑦

𝑚
      

And Z= (
𝑘𝑇

ћ𝜔
)

2

 Isotropic 2D 

 here  𝜔𝑥 =  𝜔𝑦 = 𝜔 

Now the Helmholtz energy of the system F= -kTlog(𝛽ћ𝜔)−2𝑁= 2NkTlog(
ћ𝜔

𝑘𝑇
) 

Entropy S= − [
𝜕𝐹

𝜕𝑇
]

𝑁,𝑉
= 2Nk[𝑙𝑜𝑔 (

𝑘𝑇

ћ𝜔
) + 1] 

This expression shows that entropy depends upon the number of harmonic oscillator, temperature T and 

frequency ω and it increases when number of harmonic oscillator is increased and temperature of the system 

is increased and frequency of oscillation is decreased. 
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for 3D  harmonic oscillator partition function Z= 𝑍𝑥𝑍𝑦𝑍𝑧 

                                                                                    =   (
𝑘𝑇

ћ𝜔𝑥
) (

𝑘𝑇

ћ𝜔𝑦
) (

𝑘𝑇

ћ𝜔𝑧
)              Anisotropic 3D 

And Z= (
𝑘𝑇

ћ𝜔
)

3

 Isotropic 3D 

 here  𝜔𝑥 =  𝜔𝑦 = 𝜔𝑧 = 𝜔 

Now the Helmholtz energy of the system F= -kTlog(𝛽ћ𝜔)−3𝑁= 3NkTlog(
ћ𝜔

𝑘𝑇
) 

Entropy S= − [
𝜕𝐹

𝜕𝑇
]

𝑁,𝑉
= 3Nk[𝑙𝑜𝑔 (

𝑘𝑇

ћ𝜔
) + 1] 

This expression shows that entropy depends upon the number of harmonic oscillator, temperature T and 

frequency ω and it increases when number of harmonic oscillator is increased and temperature of the system 

is increased and frequency of oscillation is decreased. 

 

 

7. Analysis of  paramagnetic and paraelectric substance : 

 

In the paramagnetic substance when the magnetic moment of the atom parallel to be B then energy of the 

atomic magnet In the up position  

𝜀1 =  −𝜇𝐵𝐵 

In the paramagnetic substance when the magnetic moment of the atom antiparallel to be B then energy of the 

atomic magnet In the down position  

𝜀2 =  +𝜇𝐵𝐵 

Now the partition function in such a case Z=  𝑒−𝛽𝜀1 + 𝑒−𝛽𝜀2 

                                                                      = 𝑒+𝛽𝜇𝐵𝐵 + 𝑒−𝛽𝜇𝐵𝐵 

                                                                                                  =  2 cosh (𝛽𝜇𝐵𝐵) 

For N number of dipoles partition function of system can be written as Z=(2 cosh (𝛽𝜇𝐵𝐵))
𝑁

 

Now the Helmholtz energy of the system F= - NkTlog[2cosh (𝛽𝜇𝐵𝐵)] 

 

Entropy S= − [
𝜕𝐹

𝜕𝑇
]

𝑁,𝑉
= Nk[𝑙𝑜𝑔{2cosh (𝛽𝜇𝐵𝐵)} −

𝜇𝐵𝐵

𝑘𝑇
𝑡𝑎𝑛ℎ (

𝜇𝐵𝐵

𝑘𝑇
)] 

This expression shows that entropy depends upon the temperature T and magnetic field B and number of 

dipoles N and value of entropy increases when number of dipoles is increased and temperature of the system 

is increased and value of  applied magnetic field B  is decreased. 

This expression is valid only when magnetic moment of the atom is parallel and antiparallel to B. 

In the paraelectric substance when the dipole moment of the atom parallel to be E then energy of the electric 

dipole In the up position  

𝜀1 =  −𝑝𝐸 

In the paraelectric substance when the dipole moment of the atom antiparallel to be E then energy of the 

electric dipole In the down position  

𝜀2 =  +𝑝𝐸 
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Now the partition function in such a case Z=  𝑒−𝛽𝜀1 + 𝑒−𝛽𝜀2 

                                                                      = 𝑒𝛽𝑝𝐸 + 𝑒−𝛽𝑝𝐸 

                                                                                                  =  2 cosh (𝛽𝑝𝐸) 

For N number of dipoles partition function of system can be written as Z=(2 cosh (𝛽𝑝𝐸))
𝑁

 

Now the Helmholtz energy of the system F= - NkTlog[2cosh (𝛽𝑝𝐸)] 

Entropy S= − [
𝜕𝐹

𝜕𝑇
]

𝑁,𝑉
= Nk[𝑙𝑜𝑔{2cosh (𝛽𝑝𝐸)} −

𝑝𝐸

𝑘𝑇
𝑡𝑎𝑛ℎ (

𝑝𝐸

𝑘𝑇
)] 

This expression shows that entropy depends upon the temperature T and electric field E and number of 

dipoles N and value of entropy increases when number of dipoles is increased and temperature of the system 

is increased and value of  applied electric field E  is decreased. 

8. Analysis of ideal classical gas : 

For Cubic box (3D)   Z=  
𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)

3

2  here Here V= 𝐿3= volume of cubic  

If there are N number of particles and molecules are distinguishable then partition function of such ideal 

classical gas 

Z=  
𝑉𝑁

ℎ3𝑁
(2𝜋𝑚𝑘𝑇)

3𝑁

2  

If there are N number of particles and molecules are indistinguishable then partition function of such ideal 

classical gas 

Z= 
1

𝑁!
 

𝑉𝑁

ℎ3𝑁
(2𝜋𝑚𝑘𝑇)

3𝑁

2  

From the Helmholtz function and partition function relation we have  

F = -kT logZ 

= NkT[𝑙𝑜𝑔 (
𝑁

𝑉
(

ℎ2

2𝜋𝑚𝑘𝑇
))

3

2

− 1] 

 

Evaluation of Entropy:  

Partition function of ideal gas when molecules are distinguishable in nature 

Z= (
𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)

3

2 )
𝑁

 

From the relation F= -kTlogZ= E-TS 

We have S= klogZ + 
𝐸

𝑇
 = Nk log(

𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)

3

2 ) +
3

2
𝑁𝑘 

S= Nk [log 𝑉 +
3

2
𝑙𝑜𝑔 (

2𝜋𝑚𝑘𝑇

ℎ2
) +

3

2
] 

Gibbs Paradox: consider two containers having the same volume V , both the container consist N 

number of atoms behaving as a ideal classical monoatomic gas and they are separated by a partition. Both 
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gases are at the same temperature T. when removal of partition takes place then the entropy of the gas 

increases. 

Using above relation entropy of initial case 

𝑆𝑖= 2Nk [log 𝑉 +
3

2
𝑙𝑜𝑔 (

2𝜋𝑚𝑘𝑇

ℎ2 ) +
3

2
] 

After removal of the partition system consist 2N number of atoms and occupied volume 2V and gas 

consist a temperature T therefore final entropy of the system becomes 

𝑆𝑓= 2Nk [log 2𝑉 +
3

2
𝑙𝑜𝑔 (

2𝜋𝑚𝑘𝑇

ℎ2 ) +
3

2
] 

Therefore we have 𝑆𝑓 − 𝑆𝑖 = 2Nklog2 

It means entropy is not behaving as an extensive parameter. This is said to be Gibbs Paradox. Since 

we have the same gas in both the containers, removal of partition is a reversible process so entropy should 

not be change. When the gases in the container have the different nature then removal of partition is an 

irreversible process and so entropy must be increased. This paradox can be understandable when molecules 

of the gas should not assume to be  distinguishable because order of the molecules (1023) is very large and 

such molecules are continuously in motion and changing there position continuously. Since molecules are 

very near by to each other so we should consider molecules of classical gas as an indistinguishable and 

partition function should be divided by N!. 

Z= 
1

𝑁!
 (

𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)

3

2 )
𝑁

   

Helmholtz function F = -kTlogZ 

F= -kTlog
1

𝑁!
 (

𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)

3

2 )
𝑁

   

For very large value of N  

                                            logN! = NlogN-N                  (Stirling approximation) 

Entropy S = − (
𝜕𝐹

𝜕𝑇
)

𝑉,𝑁
 

On solving 

S(N,V,T) =  Nk[𝑙𝑜𝑔
𝑉

𝑁
+

3

2
𝑙𝑜𝑔 (

2𝜋𝑚𝑘𝑇

ℎ2
) +

5

2
] 

This expression is said to be Sackur Tetrode equation and this expression successfully explain the 

Gibbs Paradox. 

Removal of  Gibbs Paradox: consider two containers having the same volume V , both the container 

consist N number of atoms behaving as a ideal classical monoatomic gas and they are separated by a partition. 

Both gases are at the same temperature T. when removal of partition takes place then the entropy of the gas 

remains to be same. 

Using above relation entropy of initial case 

𝑆𝑖= 2Nk [log
2𝑉

2𝑁
+

3

2
𝑙𝑜𝑔 (

2𝜋𝑚𝑘𝑇

ℎ2
) +

5

2
] 

After removal of the partition system consist 2N number of atoms and occupied volume 2V and gas consist 

a temperature T therefore final entropy of the system becomes 
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𝑆𝑓= 2Nk [log
2𝑉

2𝑁
+

3

2
𝑙𝑜𝑔 (

2𝜋𝑚𝑘𝑇

ℎ2 ) +
5

2
] 

Therefore we have 𝑆𝑓 = 𝑆𝑖  

It means entropy is  behaving as an extensive parameter. This is said to be Removal of  Gibbs Paradox. 

 

 

 

9. Analysis of relativistic gas: 

Now for the relativistic classical gas energy momentum relation E=pc 

𝒁 =  
1

𝑁!
 

𝑉𝑁

ℎ3𝑁 [∫ 𝑒−𝛽𝑐𝑝 (4𝜋𝑝2𝑑𝑝)
∞

0
]

𝑁
  on solving we get 

𝑍 =  
1

𝑁!
[8𝜋𝑉 (

𝑘𝑇

ℎ𝑐
)

3

]

𝑁

 

Helmholtz function corresponding to relativistic classical gas F= - kTlogZ    

                                       =    -kTlog 
1

𝑁!
[8𝜋𝑉 (

𝑘𝑇

ℎ𝑐
)

3

]
𝑁

 

Entropy S= − [
𝜕𝐹

𝜕𝑇
]

𝑁,𝑉
= Nklog

1

𝑁!
[8𝜋𝑉 (

𝑘𝑇

ℎ𝑐
)

3

]
𝑁

+ 3𝑁𝑘 

This expression shows that entropy of the relativistic gas depends upon number of molecules in the gas, 

volume V of the container and temperature T and it increases when number of molecules in the gas, volume 

V of the container and temperature T increases and vice versa. 

10. Analysis of black body radiation: 

Since the photon do not interact  so chemical potential  μ=0 

Grand thermodynamic potential of the system in this case would be  

F = -kT∫ 𝑙𝑜𝑔 (1 − 𝑒
−ℎ𝜈

𝑘𝑇 )
∞

0

8𝜋𝑉𝜈2𝑑𝜈

𝑘𝑇
 

On solving above expression we have 

F = - 
8𝜋5𝑉(𝑘𝑇)4

45(ℎ𝑐)3  

Entropy S= − [
𝜕𝐹

𝜕𝑇
]

𝑁,𝑉
= 

32𝜋5𝑉𝑘4𝑇3

45(ℎ𝑐)
3  

This expression shows that entropy of the black body radiation directly depends upon volume V of the 

container and third power of temperature T. 

 

11. Analysis of 1D,2D,3D and DD monoatomic ideal gas: 

From the expression Z= ∑  𝑔𝑟(𝜀𝑟)𝑒−𝛽𝜀𝑟
𝑟  

Z= ∬
𝑑𝑥𝑑𝑝𝑥

ℎ
𝑒−𝛽

𝑝𝑥
2

2𝑚 

Now using limit of x and px from -∞ 𝑡𝑜 + ∞ solving we get 

Zx = 
𝐿𝑥

ℎ
(2𝜋𝑚𝑘𝑇)

1

2        Partition function in 1D box 
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For Rectangular box (2D) Z= Zx Zy 

= 
𝐿𝑥

ℎ
(2𝜋𝑚𝑘𝑇)

1

2
𝐿𝑦

ℎ
(2𝜋𝑚𝑘𝑇)

1

2 = 
𝐴

ℎ2
 (2𝜋𝑚𝑘𝑇) 

Here A= 𝐿𝑥𝐿𝑦= area of rectangle box 

For Square  box (2D)  Z=  
𝐿

ℎ
(2𝜋𝑚𝑘𝑇)

1

2
𝐿

ℎ
(2𝜋𝑚𝑘𝑇)

1

2 = 
𝐴

ℎ2  (2𝜋𝑚𝑘𝑇) 

Here A= 𝐿2= Area of square box 

For Cuboid box (3D)   Z= Zx Zy ZZ 

=  
𝐿𝑥

ℎ
(2𝜋𝑚𝑘𝑇)

1

2
𝐿𝑦

ℎ
(2𝜋𝑚𝑘𝑇)

1

2
𝐿𝑍

ℎ
(2𝜋𝑚𝑘𝑇)

1

2 

=
𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)

3

2  here Here V=𝐿𝑥𝐿𝑦𝐿𝑧 = volume of cuboid box 

For Cubic box (3D)   Z=  
𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)

3

2  here Here V= 𝐿3= volume of cubic boxd 

From symmetry we have 

For D dimensional box  Z = 
𝐿𝐷

ℎ𝐷
(2𝜋𝑚𝑘𝑇)

𝐷

2  

Table 1.1: 

Dimension Partition Function Z 

1D 𝐿𝑥

ℎ
(2𝜋𝑚𝑘𝑇)

1

2   

2D 𝐴

ℎ2
 (2𝜋𝑚𝑘𝑇)

2
2 

3D 𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)

3
2 

DD 𝐿𝐷

ℎ𝐷
(2𝜋𝑚𝑘𝑇)

𝐷
2  

𝐹𝐷 = −𝑁𝑘𝑇 𝑙𝑜𝑔𝑍𝐷 

ED=Nk𝑇2 𝜕

𝜕𝑇
𝑙𝑜𝑔𝑍𝐷 =  Nk𝑇2 𝜕

𝜕𝑇
log

𝐿𝐷

ℎ𝐷
(2𝜋𝑚𝑘𝑇)

𝐷

2  = 
𝐷

2
𝑁𝑘𝐵𝑇 

EntropyS = klogZ+
𝐸

𝑇
 

Table 1.2: 

Dimension Entropy S 

1D 
𝑆1 = 𝑁𝑘𝐵 [𝑙𝑜𝑔

𝐿1

ℎ1
(2𝜋𝑚𝑘𝑇)

1
2 +

1

2
] 

2D 
𝑆2 = 𝑁𝑘𝐵 [𝑙𝑜𝑔

𝐿2

ℎ2
(2𝜋𝑚𝑘𝑇)

2
2 +

2

2
] 

3D 
𝑆3 = 𝑁𝑘𝐵 [𝑙𝑜𝑔

𝐿3

ℎ3
(2𝜋𝑚𝑘𝑇)

3
2 +

3

2
] 

DD 
𝑆𝐷 = 𝑁𝑘𝐵 [𝑙𝑜𝑔

𝐿𝐷

ℎ𝐷
(2𝜋𝑚𝑘𝑇)

𝐷
2 +

𝐷

2
] 

This expression shows that entropy of the 1D,2D,3D and DD monoatomic gas depends upon number of 

molecules N length of the box and temperature T and they strongly depends upon dimension D of the box. 
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12. Analysis of of rotational motion: 

A diatomic molecule has only 2 degree of freedom of rotation therefore rotational partition function can be 

expressed as 

 𝑍 =  
1

ℎ2 ∬ ∬ 𝑒
−𝜀(𝑝,𝑞)

𝑘𝑇 𝑑𝜃 𝑑𝛷𝑑𝑝𝜃𝑑𝑝𝛷 

Where θ,Φ are spherical polar coordinates. 

𝜀(𝑝, 𝑞) =  
1

2𝐼
(𝑃𝜃

2 +
𝑃𝛷

2

𝑠𝑖𝑛2𝜃
) 

𝑍 =  
1

ℎ2
∫ 𝑑𝜃 ∫ 𝑑𝛷 ∫ 𝑒

−𝑝𝜃
2

2𝑘𝑇

+∞

−∞

2𝜋

0

𝜋

0

 𝑑𝑝𝜃 ∫ 𝑒
−𝑝𝛷

2

2𝐼𝑘𝑇𝑠𝑖𝑛2𝜃 
+∞

−∞

 𝑑𝑝𝛷 

On solving, we get  

𝑍 =  
8𝜋2𝐼𝑘𝑇

ℎ2
 

Therefore Helmholtz function for rotational motion would be F= -kTlogZ 

    = -kTlog 
8𝜋2𝐼𝑘𝑇

ℎ2  

 

Entropy S= − [
𝜕𝐹

𝜕𝑇
]

𝑁,𝑉
= k logZ +

𝐸

𝑇
 = -k∑ 𝑃𝑟𝑙𝑜𝑔𝑃𝑟𝑟  

S= klog
8𝜋2𝐼𝑘𝑇

ℎ2 + 𝑘 

And partition function for N diatomic molecule will be ( 
8𝜋2𝐼𝑘𝑇

ℎ2 )
𝑁

 

And then helmholtz function F= -NkTlog 
8𝜋2𝐼𝑘𝑇

ℎ2
 

For N diatomic molecule entropy will be 𝑆𝑁=N klog
8𝜋2𝐼𝑘𝑇

ℎ2 + 𝑁𝑘 

This expression shows that entropy for diatomic molecule depends upon total number of molecules N, 

moment of inertia I and temperature T and it increases when total number of molecules N, moment of inertia 

I and temperature T  increases and vice versa. 

 

References: 

1. Khotimah’N and Viridi ds pengarjaran Fisika,(2011) 

2. J.W Gibbs, Elementary principles in statistical mechanics, Newyork (1960). 

3. G. Mclellan, The classical limit of the partition function in statistical physics, American journal of 

physics (1972) . 

4. R.P Feynman, S.Kleinert, Effective classical partition function, Physical Rev.(1986). 

5. Majhi,A Advances in Higher physics,(2016). 

6. Griffiths, D.J introduction to quantum mechanics, prentice-hall, Englewood cliffs, New Jersey 

(1995). 

7. Federick Reif, fundamentals of statistical and thermal physics, McGraw -Hill international 

editions(1985). 

8. Loknathan S,. and Gambhir R.S, an introduction statistical and thermal physics, Prentice Hall of 

India New Delhi(2007). 

9. Patharia R.K, statistical mechanics,Butterworth Heinemann (2001). 

10. M.W.Zemansky, Heat and Thermodynamics, Mc Graw Hill book company Newyork (1957). 

http://www.jetir.org/


© 2014 JETIR September 2014, Volume 1, Issue 4                                                  www.jetir.org (ISSN-2349-5162) 

JETIR1701545 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 922 
 

11. L.Landau and E.M.Lifshitz Statistical physics,Addison-Wesley (1963). 

12. E. Fermi Thermodynamics, Dover publication NEwyork (1957). 

13. R.Becker, Theory der warme Springer Verlag Berlin (1955). 

14. H.B.Callen, Thermodynamics John Wiley and sons Newyork (1960). 

15. D.K.C.Mac Donald. Introductory statistical mechanics for physicsts, John Wiley and sons Newyork 

(1963). 

16. Kuang, L.M. and Chen, X. Phys Rev. A 50, 4228 (1994). 

17. Breck.W.G and Holmes F.W. , J chem (1967). 

18. Ott. J.B and Goates J.B , Chemical thermodynamics: principles and application (2000). 

19. Jaynes E.T, Fundamental theories of physics vol-50 (1991). 

20. Baierlein R, American journal of physics (2001). 

21. Kremer M.L ,J chem (1966). 

22. Cheng CH, Thermodynamics of the system of distinguishable particle (2009). 

23. Paglietti A , Ideal gas interaction with thermal radiation in classical thermodynamics and Gibbs 

Paradox (2012). 

24. Yung-Kuo Lim, Problems and solution of thermodynamics and statistical mechanics, Sarat book 

house Kolkata (2001). 

25. Fitzpatrick Richard, Application of statistical thermodynamics (2006). 

26. Schlisser J.M, IOP science (2015). 

27. M.Sozbilir, Journal of Baltic science education (2003). 

28. A.Wehrl, Review of modern physics (1978). 

29. J.M.Maldacena, A Strominger Physical Review letters (1996). 

30. C.Vaz, L.Witten, Physical Review D, (2000). 

31. H.J Sheinblatt, Physical Review D (1998). 

 

http://www.jetir.org/

